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Assembly and Disassembly of a Metastable Bis-phosphine-Based Copper(I)
Helicate

Gernot Bauer,[a] Zolt�n Benkő,[b] J�rgen Nuss,[c] Martin Nieger,[d] and Dietrich Gudat*[a]

The synthesis of chelate complexes from bidentate ligands
that are formed by self-assembly of simpler monodentate
fragments has recently been developed as a new concept
with considerable potential for application in catalysis stud-
ies.[1] Ligand assembly can be accomplished through direct
pairing of fragments with complementary binding motifs,[2]

or by fixing two ligand fragments to a suitable template.[3]

The individual components normally join through noncova-
lent interactions such as hydrogen bonding,[2] formation of
coordinative bonds,[3] or electrostatic attraction (e.g. anion
sequestering),[4] which allow rapid assembly and disassembly
of the aggregates and the correction of improper connec-
tions.

On the other hand, the same type of self-assembly pro-
cesses was also successfully employed to generate supra-
molecular architectures such as molecular polygons and
three-dimensional cages or polyhedra,[5] and even chiral hel-
icates.[8] Controlled formation of these supramolecular archi-
tectures is normally accomplished either by mixing of pre-
formed ligand strands with suitable metal ions or by hier-
archical assembly of simple coordination compounds with
additional binding sites or reactive units, which is triggered
by, for example, displacement of a labile ligand, a redox re-

action, or addition of suitable spacers.[8] In both methodolo-
gies, constituents and final product are in equilibrium, and
the supramolecular architecture is considered to form the
most stable aggregate under the chosen reaction condi-
tions.[6–9]

We showed previously that catechol phosphine 1 assem-
bles with various Lewis acids to give template-based biden-
tate phosphine ligands that readily formed metal com-
plexes.[10] In particular, reaction with borates gave an anionic
bidentate phosphine [HNEt3]2, which was easily converted
into a chelate complex 3 a upon treatment with silver triflate
(Scheme 1).[11] In extending this chemistry to the other uni-

valent coinage metal cations, we found now that the analo-
gous CuI complex dimerizes unexpectedly upon crystalliza-
tion to form a binuclear helicate that dissolves again as
intact species in noncoordinating solvents but disassembles
irreversibly to the monomeric complex when in contact with
a donor solvent.
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Scheme 1. 3a : MX= AgOTf, L = ; 3b : (L)MX = [(cyclooctene)AuCl]; 3 c :
(L)MX = [Cu ACHTUNGTRENNUNG(MeCN)4]OTf.
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Reactions of [HNEt3]2 with cyclooctenegold(I) chloride
in DMF and copper(I) triflate in acetonitrile proceeded in a
similar manner as the reaction with silver triflate[11] to give a
triethylammonium salt together with a complex that was
readily isolated after precipitation with diethyl ether. The
products were characterized by elemental analyses and spec-
troscopic data (see Experimental Section); the identification
as the expected chelate complexes 3 b (M= Au) and 3 c
(M= Cu) followed from analysis of the 1H NMR spectra,
which showed characteristic signal patterns (corresponding
to the AB part of an ABX-type spin system) with similar
chemical shifts for the diastereotopic methylene protons as
had been observed for 3 a, and from the occurrence of peaks
of pseudo molecular ions of the composition [M(2)H]+ and
[M(2)Na]+ in (+)-ESI mass spectra, respectively. The struc-
tural assignment was confirmed by a single-crystal X-ray dif-
fraction study for the gold complex 3 b (Figure 1). The crys-

tals are isotypic to those of the silver complex 3 a[11] and con-
tain likewise one solvent molecule (DMF) per formula unit,
which exhibits no specific interactions with the chelate com-
plex. The molecular structure of complex 3 b is as expected
closely similar to that of 3 a. The phosphorus–metal distan-
ces (P�Au 2.340(1), 2.341(1) �) are in the upper range of
known bond lengths in bis-phosphinegold(I) complexes
(2.31�0.02 �[12]) and thus shorter than in 3 a (Ag�P
2.447(2), 2.451(2) �[11]). The P1-Au1-P2 angle of 164.94(4)8
is approximately 108 larger than the corresponding angle in
3 a (154.4(1)8), and the distances between the metal atom
and the closest borate oxygen atoms (3.18–3.22 �) are at
the same time notably longer (3 a : 2.81–2.85 �). As a conse-
quence, the arrangement of ligands around the gold atom
approaches more closely an undistorted linear coordination
geometry, but it remains to be determined whether this
effect reflects a stronger preference of the gold atom to

adopt a linear two-coordination, or is simply a result of the
geometrical constraints imposed by the ligand backbone.

To confirm the structural assignment of the analogous
copper complex, we grew single crystals by slow crystalliza-
tion of the crude product from a DMF–Et2O mixture. A
single-crystal X-ray diffraction study disclosed, quite surpris-
ingly, that the studied crystal contained not the expected
mononuclear complex but rather a dimeric species 4 of com-
position [Cu2(2)2] (Figure 2). A solvate containing the same
complex and two solvent molecules per formula unit was
also obtained by recrystallization of the crude product from
CHCl3. Each metal atom in 4 is coordinated by one phos-
phorus and one oxygen atom of two ligands 2, resulting in a
distorted coordination geometry that is intermediate be-
tween tetrahedral and square planar. In turn, each anionic

Figure 1. Molecular structure of 3 b (H atoms omitted for simplicity;
50% probability thermal ellipsoids); selected bond lengths [�] and angle
[8]: Au1�P2 2.340(1), Au1�P1 2.341(1), B1�O21 1.478(5), B1�O2
1.486(4), B1�O1 1.492(4), B1�O20 1.493(4); P2-Au1-P1 164.94(4).

Figure 2. Molecular structure of 3 b (top: 50 % probability thermal ellip-
soids, H atoms omitted for clarity; bottom: space-filling diagram showing
atoms with their van-der-Waals radii); selected bond lengths [�] and
angles [8]:Cu1�O11 2.172(6), Cu1�O21 2.192(6), Cu1�P1 2.218(3), Cu1�
P2 2.221(3), Cu2�O41 2.165(7), Cu2�O31 2.174(6), Cu2�P4 2.209(3),
Cu2�P3 2.213(3), O11�Cu1 O21 95.6(2); O11-Cu1-P1 91.2(2), O21-Cu1-
P1 125.5(2), O11-Cu1-P2 128.7(2), O21-Cu1-P2 88.7(2), P1- Cu1-P2
126.7(1), O41-Cu2-O31 96.2(2), O41-Cu2-P4 90.3(2), O31-Cu2-P4
123.7(2), O41-Cu2-P3 129.2(2), O31-Cu2-P3 89.6(2), P4-Cu2-P3 127.2(1).
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ligand coordinates as a m2-bridging unit to both metals. Since
the sense of the twist in the spirocyclic backbone is the
same for both template-centered bis-phosphine moieties in
an individual complex, the whole assembly represents a
chiral two-stranded helicate, both enantiomers of which
crystallize as a racemate.

To resolve the origin of the apparent discrepancies in the
results of the spectroscopic and X-ray diffraction studies, we
performed a more thorough analytical survey of the speci-
men obtained by either rapid precipitation from the reaction
mixture or slow crystallization, respectively. 31P CP-MAS
NMR spectra revealed that the bulk materials exhibit clear-
ly different spectroscopic signatures. The spectrum of the
crude product consists of a single spinning sideband mani-
fold with an isotropic chemical shift of d=�9.9 ppm and a
multiplet structure arising from spin-coupling with the adja-
cent 63/65Cu nuclei. In contrast, the crystalline material dis-
plays two spinning sideband manifolds of equal intensity
with a similar multiplet structure but distinctly different iso-
tropic chemical shifts of d=�18.8 and �22.3 ppm
(Figure 3); the signal duplication indicates that the local en-

vironment of two of the four crystallographically independ-
ent phosphorus atoms differs perceptibly from that of the
other two. The 31P NMR spectrum of a solution prepared by
dissolving crystalline 4 in the noncoordinating solvent
CDCl3 displayed a single resonance with a chemical shift
(d31P=�17.7) that is close to the average isotropic shift in
the solid state but differs clearly from the value of d=

�9.3 ppm observed for the crude product before crystalliza-
tion, thus indicating that the difference between both mate-
rials persists in solution. This finding was corroborated by a
comparison of the 1H NMR spectra, in which in particular
the signals of the diastereotopic methylene protons exhibit-
ed large deviations (d=3.63 and 3.42 ppm in the spectrum
of the crude complex vs. d=2.89 and 1.62 ppm for a solution
of crystalline 4).

Since we encountered during the spectroscopic monitor-
ing of crystallization attempts in several cases solutions
whose NMR spectra displayed both described sets of signals
at the same time, the solvent-dependent signal shifts must
be interpreted as indicating the presence of two complexes
with distinguishable molecular structures. Considering the
results of the ESI-MS studies and the similarity of the
1H NMR data of the crude product with those of the silver
and gold complexes 3 a,b, it is reasonable to assume that re-
action of the anionic ligand 2 with a copper salt produces
first a mononuclear complex 3 c with a similar molecular
structure as 3 a,b. Isolation of crystalline 4 from such solu-
tions is then rationalized by assuming that 3 c is possibly in
equilibrium with a marginal concentration of its dimer
(Scheme 2), which is apparently less soluble and exhibits a
greater tendency for crystallization.

Further light on the postulated interconversion between
both complexes was shed when we found that after addition
of [D7]DMF to a solution of 4 in CDCl3 the original NMR
signals were immediately replaced by those assigned to 3 c,
and that this change was accompanied by a significant in-
crease in the diffusion coefficient (DOSY measurements
gave D=2.1(3) � 10�10 m2 s�1 for 4 in pure CDCl3 at 303 K
vs. 4.5(1) � 10�10 m2 s�1 after addition of 20 vol %
[D7]DMF). These results give not only direct proof for the
transformation of 4 into 3 c but indicate also that the conver-
sion is associated with a marked reduction in molecular size,
in accord with a monomeric nature of 3 c as compared to di-
meric 4. Furthermore, observation of spontaneous conver-
sion of 4 into 3 c upon addition of DMF to a CDCl3 solution,
in connection with the finding that solutions of 3 c in CDCl3

or CD2Cl2 fail to undergo a reverse reaction, allows us to
conclude that conversion of 4 into 3 c is a thermodynamical-
ly favorable process and 3 c must thus be considered as the
more stable isomer in solution, and that DMF catalyzes ap-
parently the conversion between both complexes. While
these findings seem at first glance similar to previous obser-
vations of monomer–dimer equilibria involving helicates,[6]

they differ in the respect that the monomer is not stabilized
by extra solvent coordination,[6a] and that the existence of
the intact helicate in solution is attributed essentially to the
fact that disassembly of the dimers is apparently kinetically
hindered in the absence of a coordinating solvent. As a con-

Figure 3. Isotropic lines of the 161.9 MHz 31P CP-MAS spectra of 3 c
(top, nrot =15 kHz) and 4 (bottom, nrot =14 kHz). The displayed patterns
can be interpreted as one (3 c, diso =�9.9) or two (4, diso =�18.8, �22.3)
multiplets with quartet splitting due to scalar and residual dipolar cou-
pling between 31P and 63/65Cu (I =3/2) nuclei.

Scheme 2. Mutual conversion between 3 c and 4.
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sequence, cleavage of the dimer is practically irreversible,
and the solutions of 4 in noncoordinated solvents may be
considered as metastable.

The considerations on the mutual conversion between 3 c
and 4 were further supported by the results of DFT calcula-
tions, which were performed by using the B3LYP functional
with sdd and 6-31 g(d) basis sets for Cu and the lighter
atoms, respectively.[13] Molecular structures were first calcu-
lated by energy optimization in the gas phase, and relative
energies were then recomputed with the inclusion of a PCM
model to simulate the effect of solvation. Finally, Gibbs free
energies DG298 were estimated by adding to the solution en-
ergies the thermal correction to the Gibbs free energies ob-
tained from frequency calculations on the isolated com-
plexes. The computed molecular structures resemble closely
the experimentally observed structures of copper complex 4
and the silver and gold complexes 3 a, b, respectively, apart
from subtle conformational changes; the largest deviations
affect the metal coordination geometry in the monomeric
complex where formal replacement of the heavier coinage
metal atoms by copper coincides with a sharpening of the P-
Cu-P angle to 135.18 and a concomitant shortening of the
Cu�O contacts (2.342, 2.585 �). The computed total energy
of complex 4 was predicted to be identical (in CHCl3) or
only 1.1 kcal mol�1 lower (in DMSO) than that of two mole-
cules of 3 c, thus giving no clear preference for either spe-
cies. This picture changes, however, when the Gibbs free en-
ergies are compared, as cleavage of dimeric 4 into two inde-
pendent units of 3 c is now predicted to be clearly exergonic
in both DMSO (DG298

,calcd =�17.7 kcal mol�1) and CHCl3

(DG298
,calcd =�17.7 kcal mol�1). Although the absolute magni-

tude of DG298 may still be debatable, these results suggest
clearly that 3 c represents the thermodynamically favored
species in solution; on the other hand, the slightly higher in-
trinsic (i. e. energetic) stability of 4 is in accord with the ob-
served preference for this species in the crystalline state
where entropy is less important.

A further notable result of the computational studies is
the failure of all attempts to locate a structure of a mono-
meric complex [Cu(2) ACHTUNGTRENNUNG(dmf)] with an additional solvent mol-
ecule; this finding supports the hypothesis that the relative
stability of 3 c in solution is not due to formation of a stable
solvate, and that the solvent acts merely as a catalyst in the
cleavage of the dimer.

In summary, we have shown that monomeric complex 3 c
produced by the reaction of the anionic bis-phosphine 2
with Cu+ dimerizes under formation of a helicate 4 during
crystallization. The helicate dissolves without decomposition
in noncoordinating solvents, but disassembles immediately
upon addition of a donor solvent such as DMF. The ob-
served behavior implies that solutions of 4 are thus metasta-
ble, and the persistence of the helicate as dominant species
in solution is attributed to the fact that its disassembly is im-
peded by a sufficiently high kinetic barrier.

Experimental Section

Complex 3b : Solid [(cyclooctene)AuCl] (33 mg, 0.096 mmol) was added
to a solution of [NEt3H]2 (70 mg, 0.096 mmol) in dry DMF (5 mL), and
the resulting mixture was stirred for 1 h at room temperature. The solu-
tion was kept overnight at 4 8C to give colorless crystals of 3 b, suitable
for X-ray analysis, which were decanted off and dried in vacuum. The re-
maining solution was diluted with excess Et2O to yield a colorless precip-
itate, which was dried in vacuum (71 mg, yield 84%, m.p. 246 8C). Ele-
mental analysis (%) calcd for C38H30AuBO4P2·1/2DMF: C 55.89 H 3.98 N
0.86; found: C 54.53 H 3.72 N 0.86; (+)-ESI-MS: m/z : 821.14 [MH]+ ,
843.13 [MNa]+ ; (�)-ESI-MS: m/z : 855.11 [MCl]� ; 1H NMR (CDCl3): d=

7.66–7.26 (m, 20H, Ph), 6.74 (d, 3JHH =7.8 Hz, 2H, C6H3), 6.37 (t, 3JHH =

7.8 Hz, 2 H, C6H3), 5.96 (d, 3JHH =7.8 Hz, 2 H, C6H3), 4.11 (d of pseudo-t,
2JPH =3.6 Hz, 2JHH =13.6 Hz, 2H, CH2), 3.68 ppm (d of pseudo-t, 2JPH =

4.3 Hz, 2JHH = 13.6 Hz, 2H, CH2); 11B{1H} NMR (CDCl3): d =14.5 ppm;
31P{1H} NMR (CDCl3): d =36.6 ppm.

Complex 3c : Solid [Cu ACHTUNGTRENNUNG(CH3CN)4]SO3CF3 (260 mg, 0.69 mmol) was
added to a solution of [NEt3H]2 (500 mg, 0.69 mmol) in dry MeCN
(20 mL). The mixture was stirred for 30 min at room temperature, and
the resulting solution then diluted with excess Et2O to yield a colorless
precipitate (370 mg, 78%), which was dried in vacuum. (+)-ESI-MS:
m/z : 687.10 [MH]+ , 709.09 [MNa]+ ; 1H NMR ([D7]DMF/CD2Cl2): d=

7.77–7.66 (m, 4 H, Ph), 7.66–7.46 (m, 12H, Ph), 7.46–7.34 (m, 4H, Ph),
6.69 (d, 3JHH =7.6 Hz, 2 H, C6H3), 6.54 (t, 3JHH =7.6 Hz, 2 H, C6H3), 5.43
(d, 3JHH =7.6 Hz, 2H, C6H3), 3.63 (d of pseudo-t, 2JPH =2.4 Hz, 2JHH =

13.2 Hz, 2H, CH2), 3.42 ppm (d of pseudo-t, 2JPH =5.2 Hz, 2JHH =13.2 Hz,
2H, CH2); 11B{1H} NMR ([D7]DMF/CD2Cl2): d =14.7 ppm; 31P{1H}
NMR ([D7]DMF/CD2Cl2): d=�9.3 ppm.

Complex 4 : Crude complex 3 was dissolved in little DMF. Et2O was
added until the solution turned cloudy, indicating the onset of precipita-
tion. Addition of more drops of DMF produced a clear solution that was
stored at room temperature. Colorless crystals (m.p. 336 8C) formed,
which were collected by filtration. Elemental analysis (%) calcd for
C38H30CuBO4P2: C 66.44, H 4.40; found: C 65.90, H 4.56; 1H NMR
(CDCl3): d=7.45–6.94 (m, 20 H, Ph), 6.36 (t, 3JHH =7.6 Hz, 2H, C6H3),
6.20 (d, 3JHH =7.6 Hz, 2 H, C6H3), 5.81 (d, 3JHH =7.6 Hz, 2H, C6H3), 2.89
(d of pseudo-t, 2JPH =4.2 Hz, 2JHH =16.0 Hz, 2 H, CH2), 1.62 ppm (d,
2JHH =16.0 Hz, 2 H, CH2); 11B{1H} NMR (CDCl3): d =14.5 ppm; 31P{1H}
NMR (CDCl3): d =�17.7 ppm.

Crystal structure determinations : Crystallographic data were collected on
a Bruker Nonius Kappa CCD diffractometer by using MoKa radiation
(l=0.71073 �) at 123(2) K (3 b, 4.2 CHCl3) or on a Bruker Smart APEX
II diffractometer equipped with an Incoatec microfocus X-ray source[14]

(CuKa radiation, l =1.54178 �) at 100(2) K (4). Direct methods
(SHELXS-97[15]) were used for structure solution and refinement
(SHELXL-97,[16] full-matrix, least-squares on F2). Hydrogen atoms were
refined by using a riding model. 3b : Colorless crystals, C41H37AuBNO5P2,
Mr =893.43 gmol�1, crystal size 0.36 � 0.12 � 0.08 mm, monoclinic, space
group Cc (no. 9), a= 18.993(1), b=15.182(1), c=14.915(1), b=

122.75(1)8, V=3617.1(4) �3, Z=4, 1calcd = 1.641 Mg m�3, F ACHTUNGTRENNUNG(000) =1776,
m=4.203 mm�1, semiempirical absorption correction from equivalents,
min/max. transmission 0.4839/0.7298, 35 368 reflections (2 qmax =558),
8234 unique [Rint =0.031], 463 parameters, R1 (I> 2s(I))=0.018, wR2 (all
data) =0.034, largest difference peak and hole 0.404 and �0.439 eA�3. 4 :
Colorless crystals, C76H60B2Cu2O8P4, Mr =1373.82 g mol�1, crystal size
0.018 � 0.008 � 0.005 mm, triclinic, space group P1̄ (no. 2), a= 12.6532(11),
b=12.8362(11), c =22.515(3) �, a =93.904(6), b =96.695(7), g=119.170
(4)8, V =3138.3 (5) �3, Z= 2, 1calcd =1.454Mg m�3, F ACHTUNGTRENNUNG(000) =1416, m=

2.284 mm�1, semiempirical absorption correction from equivalents, min/
max. transmission 0.9600/0.9887, 21316 reflections (2qmax =1158), 8316
unique [Rint =0.079], 829 parameters, R1 (I> 2s(I))=0.107, wR2 (all
data) =0.218, largest diff. peak and hole 4.459 and �0.428 eA�3.
4.2 CHCl3: Colorless crystals, C76H60B2Cu2O8P4

.2 CHCl3, Mr =

1612.56 gmol�1, crystal size 0.45 � 0.20 � 0.10 mm, triclinic, space group P1̄
(no. 2), a =12. 12.752(2) �, b=12.870(2) �, c =22.781(4) �, a=

83.00(2)8, b=82.23(2)8, g=73.27(2)8, V=3534.1(10) �3, Z =2, 1calcd =

1.515Mgm�3, F ACHTUNGTRENNUNG(000) =1648, m =0.978 mm�1, semiempirical absorption
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correction from equivalents, min/max. transmission 0.6277/0.9280, mero-
hedral twin with 2 domains (BASF 0.217(2)), 31 575 reflections (2qmax =

508), 12354 unique [Rint = 0.093], 902 parameters, 6 restraints, R1 (I>
2s(I))=0.107, wR2 (all data) =0.299, largest diff. peak and hole 1.231 and
�1.304 eA�3. CCDC-777627 (3 b), CCDC-777652 (4), and CCDC-777628
(4.2 CHCl3) contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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